CHAPTER 19 DESIGN FOR WEBAPPS 593

19.12. Use UML to develop three or four design representations for content objects that would be
encountered as the “learning engine” described in Problem 19.2 is designed.

19.13. Do a bit of additional research on the MVC architecture and d-cide whether it would be
an appropriate WebApp architecture for the “learning engine” discussed in Problem 19.2.

19.14. What is the difference between navigation syntax and navigation semantics?

19.15. Do some research and present two or three complete hypermedia design patterns to
your class.

19.16. Define two or three NSUs for the SafeHomeAssured.com WebApp. Describe each in
some detail.

Although hundreds of books have been written on “Web design,” very few discuss any mean-
ingful technical methods for doing design work. At best, a variety of useful guidelines for
WebApp design are presented, worthwhile examples of Web pages and Java programming are
shown, and the technical details important for implementing modern WebApps are discussed.
Among the many offerings in this category, Powell’s encyclopedic discussion [POW00] is worth
considering. In addition, books by Galitz [GALO2], Heinicke [HEIO2], Schmitt (Designing CSS Web
Pages, New Riders Publishing, 2002), Donnelly (Designing Easy-to-Use Websites, Addison-
Wesley, 2001), and Nielsen [NIEOO] provide much useful guidance.

The agile view of design (and other topics) for WebApps is presented by Wallace and his col-
leagues (Extreme Programming for Web Projects, Addison-Wesley, 2003). Conallen (Building Web
Applications with UML, second edition, Addison-Wesley, 2002) and Rosenberg and Scott (Apply-
ing Use-Case Driven Object Modeling with UML, Addison-Wesley, 2001) present detailed exam-
ples of WebApps modeled using UML.

van Duyne and his colleagues (The Design of Sites: Patterns, Principles and Processes,
Addison-Wesley, 2002) have written an excellent book that covers most important aspects of
the Web engineering design process. Design process models and design patterns are covered in
detail. Wodtke (Information Architecture, New Riders Publishing, 2003), Rosenfeld and Morville
(Information Architecture for the World Wide Web, O'Reilly & Associates, 2002), and Reiss (Prac-
tical Information Architecture, Addison-Wesley, 2000) address content architecture and other
topics.

Design techniques are also mentioned in books written about specific development envi-
ronments. Interested readers should examine books on J2EE, Java, ASP.NET, CSS, XML, Perl, and
a variety of WebApp creation applications (Dreamweaver, HomePage, Frontpage, GoLive, Macro-
Media Flash, etc.) for useful design tidbits.

A wide variety of information sources on design for Web engineering is available on the In-
ternet. An up-to-date list of World Wide Web references can be found at the SEPA Web site:
http://www.mhhe.com/pressman.

KEY
CONCEPTS

IR

TESTING FOR
WEBAPPS

here is an urgency that always pervades the Web engineering process. As

formulation, planning, analysis, design, and construction are conducted,

stakeholders—concerned about competition from other WebApps, coerced
by customer demands, and worried that they’ll miss a market window—press to
get the WebApp on-line. As a consequence, technical activities that often occur
late in the Web engineering process, such as WebApp testing, are sometimes
given short shrift. This can be a catastrophic mistake. To avoid it, the Web engi-
neering team must ensure that each WebE work product exhibits high quality.
Wallace and his colleagues [WALO3] note this when they state:

Testing shouldn’t wait until the project is finished. Start testing before you write one
line of code. Test constantly and effectively, and you will develop a much more durable
Web site.

Since analysis and design models cannot be tested in the classical sense, the Web
engineering team should conduct formal technical reviews (€hapter 26) as well
as executable tests: The intent is to uncover and correct errors before the WebApp
is made available to its end-users.

CHAPTER 20 TESTING FOR WEBAPPS 595

B How do we
® assess
quality within the
context of a
WebApp and its
environment?

In Chapter 13, we noted that testing is the process of exercising software with the in-
tent of finding (and ultimately correcting) errors. This fundamental philosophy does
not change for WebApps. In fact, because Web-based systems and applications re-
side on a network and interoperate with many different operating systems, browsers
(or other interface devices such as PDAs or mobile phones), hardware platforms,
communications protocols, and “backroom” applications, the search for errors rep-
resents a significant challenge for Web engineers.

To understand the objectives of testing within a Web engineering context, we
must consider the many dimensions of WebApp quality.! In the context of this dis-
cussion, we consider quality dimensions that are particularly relevant in any discus-
sion of testing for Web engineering work. We also consider the nature of the errors
that are encountered as a consequence of testing, and the testing strategy that is ap-
plied to uncover these errors.

20.1.1 Dimensions of Quality

Quality is incorporated into a Web application as a consequence of good design. It is
evaluated by applying a series of technical reviews that assess various elements of
the design model and by applying a testing process that is discussed throughout this
chapter. Both reviews and testing examine one or more of the following quality di-
mensions [MILOO]:

e Content is evaluated at both a syntactic and semantic level. At the syntactic
level, spelling, punctuation, and grammar are assessed for text-based
documents. At a semantic level, correctness (of information presented),
consistency (across the entire content object and related objects), and lack of
ambiguity are all assessed.

e Function is tested to uncover errors that indicate lack of conformance to
customer requirements. Each WebApp function is assessed for correctness,
instability, and general conformance to appropriate implementation
standards (e.g., Java or XML language standards).

1 WebApp quality has also been considered in Chapter 19.

598

[)
T

POINT

The test plan identifies
 testing fask sef, the
work products to be
developed, and the
way in which results
are to be evaluated,
recorded, and reused.

PART THREE APPLYING WEB ENGINEERING

Because many WebApps evolve continuously, WebApp testing is an on-going activ-
ity conducted by Web support staff who use regression tests derived from the tests
developed when the WebApp was first engineered.

20.1.4 Test Planning

The use of the word planning (in any context) is anathema to some Web developers.
As we noted in earlier chapters, these developers just start—hoping that a killer Web-
App will emerge. A Web engineer recognizes that planning establishes a roadmap
for all work that follows. It's worth the effort.

In their book on WebApp testing, Splaine and Jaskiel [SPLO1] state:

Except for the simplest of Web sites, it quickly becomes apparent that some sort of test
planning is needed. All too often, the initial number of bugs found from ad hoc testing is
large enough that not all of them are fixed the first time they're detected. This puts an ad-
ditional burden on people who test Web sites and applications. Not only must they con-
jure up imaginative new tests, but they must also remember how previous tests were
executed in order to reliably re-test the Web site/application, and ensure that known
bugs have been removed and that no new bugs have been introduced.

The question for every Web engineer is: How do we “conjure up imaginative new
tests,” and what should those tests focus on? The answers to these questions are
contained within a test plan.

A WebApp test plan identifies (1) a task set? to be applied as testing commences,
(2) the work products to be produced as each testing task is executed, and (3) the
manner in which the results of testing are evaluated, recorded, and reused when re-
gression testing is conducted. In some cases, the test plan is integrated with the proj-
ect plan. In others, the test plan is a separate document.

The testihg process for Web engineering begins with tests that exercise content and
interface functionality that is immediately visible to end-users. As testing proceeds,
aspects of the design architecture and navigation are exercised. The user may or may
not be cognizant of these WebApp elements. Finally, the focus shifts to tests that ex-
ercise technological capabilities that are not always apparent to end-users—WebApp
infrastructure and installation/implementation issues.

“In gonieral, the software testing techniques [Chapters 13 and 14] that are applied fo other applications are the
0 thase applied to Web-based applications . .. The difference between the two fypes of testing is that the
in the Web environment muliply.”

2 Task sets are discussed in Chapter 2. A related term--work flow—has also been used in this book
to describe a series of tasks required to accomplish a software engineering activity.

CHAPTER 20 TESTING FOR WEBAPPS 599

The testing
process

technology

Figure 20.1 juxtaposes the WebApp testing process with the design pyramid dis-
cussed in Chapter 19. Note that as the testing flow proceeds from left to right and top
to bottom, user visible elements of the WebApp design (top elements of the pyramid)
are tested first, followed by infrastructure design elements.

Content testing (and reviews) attempts to uncover errors in content. This testing
activity is similar in many respects to copy-editing for a written document. In fact, a
large Web site might enlist the services of a professional copy editor to uncover ty-
pographical errors, grammatical mistakes, errors in content consistency, errors in
graphical representations, and cross referencing errors. In addition to examining
static content for errors, this testing step also considers dynamic content derived
from data maintained as part of a database system that has been integrated with the
WebApp.

Interface testing exercises interaction mechanisms and validates aesthetic aspects
of the user interface. The intent is to uncover errors that result from poorly imple-
mented interaction mechanisms or omissions, inconsistencies or ambiguities that
have been introduced into the interface inadvertently.

Navigation testing applies use-cases, derived as part of the analysis activity, in the
design of test cases that exercise each usage scenario against the navigation design.

POINT
The strategy for
integrafion festing
depends upon the
WebApp architecture
that has been chosen
during design.

PART THREE APPLYING WEB ENGINEERING

Navigation mechanisms (e.g., menu b‘ars) implemented within the interface layout
are tested against use-cases and NSUs (Chapter 19) to ensure that any errors that
impede completion of a use-case are identified and corrected.

Component lesting exercises content and functional units within the WebApp.
When WebApps are considered, the concept of the unit (introduced in Chapter 13)
changes. The “unit” of choice within the content architecture (Chapter 19) is the Web
page. Each Web page encapsulates content, navigation links, and processing ele-
ments (forms, scripts, applets). A “unit” within the WebApp architecture may be a de-
fined functional component that provides service directly to an end-user or an
infrastructure component that enables the WebApp to perform all of its capabilities.
Each functional component is tested in much the same way as an individual module
is tested in conventional software. In most cases, tests are black-box oriented. How-
ever, if processing is complex, white-box tests may also be used.® In addition to func-
tional testing, database capabilities are also exercised.

As the WebApp architecture is constructed, navigation and component testing are
used as integration tests. The strategy for integration testing depends on the content
and WebApp architecture that has been chosen (Chapter 19). If the content architec-
ture has been designed with a linear, grid, or simple hierarchical structure, it is pos-
sible to integrate Web pages in much the same way as we integrate modules for
conventional software. However, if a mixed hierarchy or network (Web) architecture
is used, integration testing is similar to the approach used for OO systems. Thread-
based testing (Chapter 14) can be used to integrate the set of Web pages (a NSU may
be used to define the appropriate set) required to respond to a user event. Each
thread is integrated and tested individually. Regression testing is applied to ensure
that no side effects occur. Cluster testing integrates a set of collaborating pages (de-
termined by examining the use-cases and NSU). Test cases are derived to uncover
errors in the collaborations.

Each element of the WebApp architecture is unit tested to the extent possible. For
example, in a MVC architecture (Chapter 19) the model, view and controller compo-
nents are each tested individually. Upon integration, the flow of control and data
across each of these elements is assessed in detail.

Configuration testing attempts to uncover errors that are specific to a particular
client or server environment. A cross-reference matrix that defines all probable op-
erating systems, browsers,* hardware platforms, and communications protocols is
created. Tests are then conducted to uncover errors associated with each possible
configuration.

3 Black-box and white-box testing techniques are discussed in Chapter 14.
4 Browsers are notorious for implementing their own subtly different “standard” interpretations of
HTML and Javascript.

